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Abstract. Despite growing interest in the effects of landscape heterogeneity on genetic structuring, few tools are
available to incorporate data on landscape composition into population genetic studies. Analyses of isolation by distance
have typically either assumed spatial homogeneity for convenience or applied theoretically unjustified distance metrics
to compensate for heterogeneity. Here I propose the isolation-by-resistance (IBR) model as an alternative for predicting
equilibrium genetic structuring in complex landscapes. The model predicts a positive relationship between genetic
differentiation and the resistance distance, a distance metric that exploits precise relationships between random walk
times and effective resistances in electronic networks. As a predictor of genetic differentiation, the resistance distance
is both more theoretically justified and more robust to spatial heterogeneity than Euclidean or least cost path-based
distance measures. Moreover, the metric can be applied with a wide range of data inputs, including coarse-scale range
maps, simple maps of habitat and nonhabitat within a species’ range, or complex spatial datasets with habitats and
barriers of differing qualities. The IBR model thus provides a flexible and efficient tool to account for habitat het-
erogeneity in studies of isolation by distance, improve understanding of how landscape characteristics affect genetic
structuring, and predict genetic and evolutionary consequences of landscape change.
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The emerging study of how landscape features affect mi-
croevolutionary processes (landscape genetics; Manel et al.
2003) will require tools that explicitly incorporate landscape
heterogeneity into analyses of gene flow and genetic differ-
entiation. Landscape characteristics may modify gene flow
between pairs of subpopulations directly by affecting dis-
persal rates among them or indirectly by affecting the spatial
arrangement of and dispersal rates among intervening sub-
populations. Yet, few models are capable of integrating land-
scape data into predictions of population structure.

For example, models of isolation by distance (Wright
1943) are among the most widely applied tools in studies of
genetic differentiation in natural populations. These models
have provided powerful means to explain population struc-
ture (e.g., Rousset 1997, 2000; Sumner et al. 2001; Rueness
et al. 2003), investigate departures from migration-drift equi-
librium (Slatkin 1993; Hutchison and Templeton 1999), and
address ecological questions such as whether dispersal syn-
chronizes the dynamics of populations separated by long dis-
tances (Schwartz et al. 2002). Yet, such analyses assume
homogeneous, unbounded populations, ignoring effects of
range boundaries and of variation in demographic parameters
within species’ ranges (Maruyama 1970; Slatkin and Maru-
yama 1975). As Slatkin (1985) noted, most real populations
are neither homogeneous nor unbounded, and when popu-
lation densities or migration rates vary across space, the pre-
dictive abilities of these models may suffer.

Perhaps because of their broad utility, isolation-by-dis-
tance models have been a focus of growing efforts to incor-
porate landscape data into studies of natural populations. In
particular, empiricists now commonly substitute least cost
path (LCP) distance measures for Euclidean distances in iso-
lation-by-distance analyses (e.g., Arnaud 2003; Coulon et al.
2004; Schweiger et al. 2004; Vignieri 2005). These measures
modify geographic distances between sample pairs to account
for characteristics of the intervening landscape that facilitate

or impede movement along a single, optimal pathway. Yet,
despite their intuitive appeal, LCP measures cannot consider
the effects of multiple dispersal pathways connecting samples
and remain without theoretical foundation for most popula-
tion genetic applications. To date, no theoretically justified
method to incorporate landscape heterogeneity into isolation-
by-distance analyses has been proposed.

To address this deficiency, I describe a new method de-
signed to predict the effects of landscape structure on equi-
librium genetic structuring in natural populations. The iso-
lation-by-resistance (IBR) model predicts a positive rela-
tionship between genetic differentiation and the resistance
distance, a graph theoretic distance metric based in circuit
theory. The resistance distance provides a more appropriate
predictor of equilibrium genetic differentiation than Euclid-
ean distance because it accounts for heterogeneity in species’
distributions and migration rates. It improves over LCP meth-
ods because it incorporates all possible pathways and is better
supported by existing analytic theory. Finally, the resistance
distance accommodates a variety of data inputs, from simple
habitat or range maps to complex arrays of populations with
known sizes and migration rates. Thus, the IBR model fills
a gap between models that are nonspatial and those that re-
quire heavy parameterization and/or computation, and it pro-
vides a quantitative and conceptual link between the disci-
plines of population genetics and landscape ecology.

AN EXAMPLE PROBLEM

Figure 1 shows a landscape in which suitable habitat for
a species of limited dispersal ability is bounded internally
and externally by inhospitable nonhabitat. The map could be
based on a published range map or on a simple habitat model
(e.g., forest for a forest-obligate species). The species’ habitat
is divided into two main blocks, A and B, connected by two
corridors. Only a small subset of local populations (or in-
dividuals) has been sampled, as is common in studies of
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FIG. 1. Range or habitat map for a hypothetical species, with suitable habitat shown in gray. The species is assumed to be continuously
distributed throughout the habitat and to have limited dispersal ability. Dots indicate locations of 21 samples from individuals or local
populations. Two common distance measures between sample pairs are shown: Euclidean distances (solid lines), and cost-weighted
distances from least cost path analyses (dashed lines). Inset shows discretized habitat represented as a network of nodes connected to
their neighbors by resistors. Diagonal connections or connections between nonadjacent nodes could also be incorporated. Resistance
distance calculations using this network would integrate all possible pathways connecting sample pairs.

natural populations (Beerli 2004; Slatkin 2005). The map is
the only information available on the species’ distribution,
which is also very common. Questions of interest to an evo-
lutionary biologist may include whether populations are at
drift-migration equilibrium, whether events such as range
expansions have occurred in the recent past, whether histor-
ical or current habitat configurations better explain patterns
of genetic structuring, and how future habitat changes (e.g.,
elimination of one of the corridors) may affect gene flow and
evolutionary potential of local populations (Templeton et al.
2001).

Even in such a simple landscape, attempts to predict equi-
librium patterns of genetic structuring would be compromised
by spatial heterogeneity. In particular, the irregular shape of
the species’ habitat would weaken the predictive power of
standard isolation-by-distance models. Although Euclidean
distance may perform reasonably well as a predictor of ge-
netic differentiation within each habitat block, different mod-
els would need to be applied in the two cases: a one-dimen-
sional model (genetic differentiation increases with raw Eu-
clidean distance) would be appropriate for block A, whereas
block B would require a two-dimensional model (differen-
tiation increases with log-transformed Euclidean distance;
Rousset 1997). Log-transformed distances may also be more
appropriate for the four uppermost samples in block A, where
habitat is locally two-dimensional. Between habitat blocks,
Euclidean distances would certainly be poor predictors of
differentiation because migration is restricted to narrow cor-
ridors, resulting in greater differentiation than expected based
on distance alone.

Although within-habitat distances calculated using LCP
models could be substituted for Euclidean distances, they

would still not adequately capture the effect of spatial het-
erogeneity on genetic structuring in this example. Originating
in graph theory and applied in a raster GIS environment, LCP
models first assign costs (also referred to as resistance or
friction values) to grid cells that reflect relative movement
difficulties through different habitat types. The optimal route
connecting each sample pair is then plotted, and a cost-
weighted distance (the cumulative cost of all cells the route
runs through) is used as an index of effective distance be-
tween them (Adriaensen et al. 2003). Thus, although they
may offer some predictive advantage when gene flow is gen-
uinely constrained to single pathways (as in stream networks;
e.g., Arter 1990), LCP models cannot incorporate the effects
of wider habitat swaths or of independent, parallel pathways
connecting samples. In the example above, cost-weighted dis-
tances would differ little from Euclidean distances within
either habitat block and, in fact, would need to be log-trans-
formed to predict genetic distances in block B. LCP methods
would also not predict increased gene flow between the two
blocks when two corridors are present rather than one.

Although better able to accommodate spatial heterogene-
ity, migration matrix models (Bodmer and Cavalli-Sforza
1968) and coalescent models (Kingman 1982) would also be
of limited use in this case. These models, combined with
maximum likelihood techniques, have been useful in esti-
mating demographic parameters given genetic data from rel-
atively small and well-sampled networks (e.g., Tufto et al.
1998; Beerli and Felsenstein 2001). But to predict genetic
structuring given landscape characteristics, they would first
require data on population densities and migration rates at a
level of detail rarely attainable in studies of natural popu-
lations. Moreover, their computational costs increase rapidly
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FIG. 2. (A) Three demes (open circles) connected by migration
and analogous nodes (closed circles) connected by resistors. Theory
discussed in this paper is limited to the balanced migration case,
Namab � Nbmba. (B) Equivalent two-deme system connected by
effective number of migrants M̂ab, and equivalent two-node system
connected by effective conductance Ĝab. Ĝab will approximate M̂ab
when G-values are set to corresponding Nm values.

with the number of demes modeled, complicating their use
in realistic landscapes.

What is needed, then, is a predictive model that is not only
more robust to spatial heterogeneity than existing distance
metrics, but also less demanding of data and computational
resources than the more sophisticated analytic models. Ide-
ally, the model should allow prediction of expected patterns
of gene flow and genetic differentiation considering the extent
and quality of habitat alone. It should, for example, predict
increased genetic differentiation with distance within one-
dimensional habitat blocks and with the logarithm of distance
where habitat is two-dimensional. It should also predict great-
er gene flow when multiple corridors connect samples than
with one and in wider swaths of habitat than in narrower
swaths (Slatkin 1993).

Distance metrics based in circuit theory can fill this role,
as the properties we are looking for are shared by conductive
materials. Recall that two resistors connected in parallel have
lower effective resistance (higher effective conductance; con-
ductance is simply the reciprocal of resistance) to current
flow than would a single resistor. Similarly, a continuous
conductive material will have higher effective conductance
between two points if there are multiple or wider conductive
pathways between them. That is, if the map in Figure 1 rep-
resented a conductive surface, current would flow more freely
in wider blocks, less freely in narrow corridors, and more
freely between blocks A and B with two corridors connecting
them than with one. Accordingly, effective conductance be-
tween pairs of points on the surface would behave very much
like we expect gene flow to behave in the landscape. Effective
resistance would behave very much like equilibrium genetic
differentiation; in fact, effective resistance increases with dis-
tance in one-dimensional conductors and with its logarithm
in two-dimensional conductors. These properties are also
shared by networks of discrete resistors, which can be used
to model electrical connectivity across continuous conductive
surfaces, as in the inset of Figure 1.

THE MODEL

The conceptual basis of the IBR model lies in analogous
properties of gene flow in deme networks and conductance
in linear electronic circuits (Fig. 2). All else being equal,
equilibrium levels of gene flow between two demes connected
by migration (e.g., demes a and b) will increase if additional
parallel movements of genes are allowed, either through in-
creased direct movements of gametes or through indirect gene
flow via intervening demes (deme c). Similarly, effective
conductance between two nodes in a network of resistors
(e.g., nodes A and B) will increase if additional connections
are made, either directly through extra parallel resistors or
indirectly via intervening nodes (node C).

Demes connected by migration can be represented in a
graph theoretic framework as nodes connected by edges (e.g.,
Matsen and Wakeley 2006). In the context of this paper, edge
weights are proportional to numbers of migrants exchanged
between deme pairs. Numbers of migrants (and hence edge
weights) can vary across the graphs, but edges are assumed
to be undirected (i.e., dispersal is balanced, with numbers of

migrants exchanged between demes being equal in both di-
rections; McPeek and Holt 1992).

On such graphs, the resistance distance between any pair
of nodes is defined as the effective resistance between the
nodes when each graph edge is replaced by a resistor, the
conductance of which is set equal to the corresponding edge
weight (Klein and Randic 1993). A key property of the re-
sistance distance is that adding additional pathways between
nodes always reduces the resistance distance separating them;
the metric also takes advantage of well-known connections
between effective resistances and random walks on graphs
(Doyle and Snell 1984). Although it has been used in other
fields (e.g., in the analysis of social, biochemical, and neural
networks; Balaban and Klein 2002; Vast et al. 2005; Yen et
al. 2005), the resistance distance has yet to be applied to
network analyses in ecology or evolution.

For deme networks or continuous populations that can be
represented using connected, undirected graphs, the IBR
model predicts increased equilibrium genetic differentiation
between samples with increased resistance distances between
nodes. Applying the model first involves replacing networks
of demes or habitat cells connected by migration with net-
works of nodes connected by resistors, as in Figures 1 and
2. Conductances assigned to resistors reflect numbers of mi-
grants exchanged between corresponding demes or cells (or
relative numbers of migrants, depending on the level of detail
of hypothesized migration patterns). Effective conductances
between node pairs are then used as proxies for effective
migration between corresponding demes or grid cells, where-
as resistance distances are used as indices of genetic differ-
entiation.

Calculating the Resistance Distance

Nodal analysis applies Kirchhoff’s (1845) laws in matrix
form to efficiently solve for effective resistances across pairs
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of nodes within circuits (Dorf and Svoboda 2003). Consider
an array of n nodes connected in any configuration by resis-
tors, with the conductance of the resistor connecting each
pair of nodes i and j denoted by Gij. Define G to be an n �
n conductance (or weighted Laplacian) matrix with each non-
diagonal element at row i and column j set equal to �Gij (or
zero if there is no direct connection between the nodes), and
each diagonal element (i, i) set equal to the sum of the con-
ductances of all resistors connected to node i. For the circuit
shown in Figure 2,

G � G �G �G⎛ ⎞AB AC AB AC
⎜ ⎟

G � �G G � G �G . (1)⎜ ⎟AB AB BC BC⎜ ⎟
�G �G G � G⎝ ⎠AC BC AC BC

Note that this matrix is easily generated from a standard
migration matrix. To calculate the resistance distance be-
tween any pair of nodes x and y (x � y for convenience), a
reduced conductance matrix Gy is defined, which is equal to
G except that row y and column y have been removed. Next,
define an n � 1 column vector i, which is all zeros except
for the xth element, which is set to one. Gy and i are then
substituted into the equation Gyv � i, which is solved for
the vector v. The xth element of v will equal the resistance
distance between nodes x and y, R̂xy, while its reciprocal will
equal the effective conductance between the two nodes, Ĝxy.
Because v can be obtained using matrix techniques that do
not require inverting the reduced conductance matrix, very
large networks can be solved using this method. Other al-
gorithms (e.g., Babic et al. 2002; Vast et al. 2005) allow
computation of all resistance distances with a single matrix
inversion and may be more efficient for moderate-sized net-
works with large numbers of pairwise resistances to calculate.

Equivalence of Analytic Theories in Isotropic Deme Arrays

The theoretical basis of the IBR model lies in combining
previously established relationships between resistance dis-
tances and random walk times with those between pairwise
FST-values and coalescence times. In this section, I demon-
strate a basic equivalence between theories describing effec-
tive resistance in circuits and genetic differentiation in iso-
tropic deme networks (i.e., networks in which migration pat-
terns are identical among all demes; Strobeck 1987). The
nonisotropic case will then be addressed in the following
section.

In the equations below, I depart somewhat from previous
practice in defining the effective number of migrants mea-
sured between any two demes x and y, M̂xy, to be the number
of migrants that would produce the same level of genetic
differentiation in a two-deme (two-island) system. This dif-
fers slightly from Slatkin’s (1993) M̂, which assumes an in-
finite island model. For the two-deme case, Crow and Aoki’s
(1984) equation for equilibrium pairwise FST in terms of
deme sizes and migration rates can be rewritten in linearized
form (Rousset 1997) as:

F 1ST � , (2)
1 � F 16NmST

where N is the size of each deme and m is the proportion of
genes in each deme that are derived from immigrants from

the other deme. From this equation, the number of migrants
between two demes that would be estimated from their pair-
wise FST value is

1 1
M̂ � � 1 , (3)xy � �16 FST

which is one-quarter the value inferred assuming an infinite
island model (Slatkin 1993).

Slatkin (1991, 1993) showed that for the weak mutation
case, pairwise FST-values between two demes can be cal-
culated from coalescence times of pairs of genes sampled
within and between the demes. Slatkin’s equation relating
these quantities can be rewritten in terms of linearized FST
as:

F t̄ � t̄ST 1 0� , (4)
1 � F 2t̄ST 0

where t̄0 is the average expected coalescence time of two
different genes sampled from the same deme, and t̄1 is the
expected coalescence time of two genes sampled from dif-
ferent demes. The second quantity is the sum of two parts:

, the expected time before two alleles are first found in thet̄�1
same deme and the time until they coalesce thereafter (Slatkin
1991).

For demes connected by isotropic migration, the time until
two alleles are first in the same deme will be the same as in
the case of one allele moving at twice the rate with the other’s
position fixed, provided m is small (Matsen and Wakeley
2006). Thus, the time until the two alleles are in the same
deme is half the time for an allele to move from one deme
to the other, or one-quarter the commute time, that is, the
expected time for the allele to make a round trip from one
deme to the other and back again. Chandra et al. (1997)
showed that commute times on weighted graphs are precisely
related to effective resistances in analogous circuits when
conductances are proportional to movement probabilities.
When conductances between adjacent pairs of nodes are set
to the number of migrants, Nxmxy between corresponding
demes (so that the sum of all conductances for node x, in-
cluding self loops to reflect the probability that an allele does
not migrate, is Nx), Chandra et al.’s (1997, theorem 2.2) ex-
pression for commute time simplifies to:

d
ˆt̄ � R N , (5)�c xy i

i�1

where t̄c is the commute time between demes x and y and R̂xy

is the effective resistance (i.e., the resistance distance) be-
tween corresponding nodes. If all deme sizes are equal and
d is the number of demes in the system, then t̄c � R̂xyNd, and

� R̂xyNd/4, where N is the deme size. The expected coa-t̄�1
lescence times are then t̄0 � 2Nd (Slatkin 1991), and t̄1 �
R̂xyNd/4 � 2Nd. Substituting these values into equation (4),
the relationship between equilibrium pairwise genetic dis-
tance and the resistance distance will be:

ˆF /(1 � F ) � R /16.ST ST xy (6)

Combined with equation (3), this result also implies:
ˆ ˆM � G ,xy xy (7)

where Ĝxy is the effective conductance between nodes x and y.
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FIG. 3. An isotropic migration pattern with long-distance dispersal
(adapted from Matsen and Wakeley 2006). The figure could rep-
resent, for example, breeding habitat for fish along the shoreline of
a lake or for amphibians in ponds separated by dry land. Resistance
distances are precisely related to FST-values in isotropic cases.

Equations (6) and (7) establish practical links between cir-
cuit and gene flow theories and form the basis for using the
resistance distance as an index of genetic differentiation. Note
that the same correspondence can be obtained without ref-
erence to commute times. For example, Ĝ calculated using
Jeng’s (2000) equation for effective resistance on a torus is
equivalent to the equation for M̂ on a torus derived by Slatkin
(1993), adjusted for the two-island case. Equivalence for
demes arrayed on a circle is easily demonstrated using ele-
mentary circuit theory. The equivalence between the two the-
ories holds for any isotropic migration scheme, including
symmetric island models and symmetric arrays with long-
distance migration (Fig. 3).

A convenient property of the model is that multiplying
conductances of all resistors in a circuit by a scalar will result
in all effective conductances being multiplied by the same
scalar and all resistance distances being multiplied by its
inverse. So, if node-to-node conductances reflect relative
rather than absolute numbers of migrants, Ĝxy and R̂xy will
still be proportional to M̂xy and linearized FST, respectively.

Model Performance in Nonisotropic Cases

The above results demonstrate that the IBR model is con-
sistent with existing analytic theory for isotropic migration
patterns; however, the main purpose of the model is to predict
genetic structuring when migration patterns differ from this
ideal. In such cases, resistance distances still precisely cap-
ture commute times as long as balanced migration is assumed,
but commute times only approximate the expected time until
two alleles are first found in the same deme. So, although
equation (5) still holds, we can no longer rely on equations
(6) and (7) to justify the model. Instead, the predictive power
of resistance distances can be evaluated by comparing them
to pairwise FST-values expected under a range of nonisotropic
migration scenarios.

The standard: FST calculated using Markov chains

In small networks with known deme sizes and migration
rates, exact pairwise FST-values can be obtained by using
standard Markov chain approaches to calculate within- and
between-deme coalescence times. A full description of the
Markov chain algorithm used here is available in Appendix
1 (available online only at http://dx.doi.org/10.1554/
05-321.1.s1). An example application of the algorithm to
solve the three-deme system in Figure 2 is given in Appendix
2 (available online only at http://dx.doi.org/10.1554/
05-321.1.s2), along with a formal derivation of the nodal
analysis equations for the analogous circuit.

Aside from its data requirements, the main limitation of
the Markov chain method is computational: for an array of
d demes, the algorithm requires specifying d(d � 1)/2 states.
As a result, equation (A6) in Appendix 1 can quickly become
difficult to solve (in my experience, this becomes limiting at
about 100 demes on a standard desktop computer). By con-
trast, solving for resistance distances requires only operations
involving matrices of dimension d � d. The smaller dimen-
sions and greater sparseness of conductance matrices allow
effective resistances to be calculated on much larger arrays
(�100,000 demes on the same computer). Still, IBR predic-
tions can be checked against those of the Markov chain al-
gorithm in deme arrays small enough to be accommodated
by the algorithm.

Correlations between distance measures and linearized FST

To test the IBR model in nonideal cases, I regressed exact
FST/(1 � FST) values calculated using the Markov chain al-
gorithm against resistance distances calculated using nodal
analysis for each of 10 example deme networks. Note that
correlations will be the same whether we use the resistance
distance as an index of differentiation or estimate FST/(1 �
FST) using equation (6). I compare IBR model predictions
with those obtained using LCP and isolation-by-distance
models, and use R2-values to assess model fit because this
is how model predictions will most likely be evaluated with
empirical data. Higher R2-values will also mean greater power
to detect significant relationships using Mantel tests.

Table 1 summarizes correlations between Markov chain
solutions and resistance distances, Euclidean distances, and
cost-weighted (LCP) distances for the 10 networks. The re-
gressions show the resistance distance to be a reliable pre-
dictor of equilibrium genetic differentiation across a wide
range of conditions, consistently outperforming the other dis-
tance measures. The results also illustrate several important
properties of the model.

First, performance of the resistance distance improves with
increasing population sizes and/or migration rates in all of
the networks. This is due to the assumption that, within a
network, no demes are more isolated from the network as a
whole than others. When numbers of migrants are few (typ-
ically fewer than one migrant per generation), demes in cor-
ners of arrays or with lower migration rates than other demes
will have shorter than average within-deme coalescence times
(i.e., they will be more inbred than other demes). Pairs of
demes that are separated by large distances and more inbred
than other demes will exhibit long between-deme coalescence
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TABLE 1. Isolation-by-resistance (IBR) model performance in finite networks. Table entries are R2-values for regressions of FST/(1 �
FST) as calculated by the Markov chain algorithm in 10 deme networks against Euclidean distance (IBD), cost-weighted distance (LCP),
and resistance distance (IBR). R � C deme arrays are finite networks of R rows by C columns of demes (total of RC demes) connected
by migration rates that are equal across the networks. The remaining arrays correspond to the deme maps shown in Figure 4 (case I).
Following Rousset (1997), Euclidean distances are log10 transformed except in the 1 � 8, 1 � 64, and 4 � 16 arrays. Cost-weighted
distances are calculated along the least cost path connecting deme pairs, with per step costs equal to the reciprocal of migration rates.

Deme array

N � 2

IBD LCP IBR

N � 100

IBD LCP IBR

N � 10,000

IBD LCP IBR

4 � 4, m � 0.1 0.86 0.79 0.99 0.90 0.82 1.0 0.90 0.82 1.0
4 � 4, m � 0.001 0.79 0.73 0.96 0.84 0.78 0.99 0.90 0.82 1.0
8 � 8, m � 0.001 0.67 0.69 0.93 0.75 0.76 0.98 0.83 0.81 1.0
1 � 16, m � 0.1 0.92 0.92 0.92 1.0 1.0 1.0 1.0 1.0 1.0
1 � 64, m � 0.1 0.83 0.83 0.83 1.0 1.0 1.0 1.0 1.0 1.0
4 � 16, m � 0.1 0.95 0.92 0.98 0.99 0.96 1.0 0.99 0.96 1.0
Figure 4A 0.27 0.89 0.93 0.33 0.93 1.0 0.34 0.92 1.0
Figure 4B 0.33 0.71 0.89 0.37 0.79 0.97 0.42 0.85 1.0
Figure 4C 0.14 0.85 0.90 0.11 0.93 0.99 0.10 0.94 1.0
Figure 4D 0.40 0.54 0.81 0.45 0.57 0.99 0.40 0.53 1.0

FIG. 4. Four deme maps used in comparisons of isolation-by-re-
sistance predictions with Markov chain predictions. For case I, deme
sizes are equal across the networks and are given in Table 1; large
arrows correspond to m � 0.1, small arrows m � 0.05, solid lines
m � 0.01, and dotted lines m � 0.001. For cases II and III, large
arrows correspond to Nm � 10, small arrows Nm � 5, solid lines
Nm � 2, and dotted lines Nm � 1. For case II, deme sizes in the
upper half of each network are N � 100, and those in the lower
half are N � 1000. For case III, deme sizes in the upper-left quadrant
of each networks are N � 1000, upper-right N � 500, lower-left N
� 200, lower-right N � 100.

times relative to within-deme coalescence times, inflating FST
values at large distances relative to IBR predictions.

Second, while the resistance distance scales with Euclidean
distance and with its logarithm in purely one- and two-di-
mensional arrays, respectively, it improves over both in in-
termediate cases. For example, R2-values for resistance dis-
tances are the same as those for Euclidean distances in the
1 � 16 and 1 � 64 cases, but are higher in the 4 � 16 array.

The latter array represents a situation in which habitat is
locally two-dimensional, but becomes linear at larger dis-
tances. Here the resistance distance obviates choosing be-
tween raw and log-transformed Euclidean distances, and it
is superior to both.

Third, the advantages of the resistance distance are par-
ticularly evident in arrays with irregular shape and/or vari-
ation in migration rates. The array in Figure 4A includes a
partial barrier between demes in the left and right portions
of the array, making Euclidean distance an inappropriate pre-
dictor of genetic differentiation when measured across the
barrier. The irregular shape is automatically factored into the
resistance distance, however, resulting in much better pre-
dictions of patterns of genetic differentiation (Table 1). Cost-
weighted distances do not perform as well, but are still an
improvement over Euclidean distances because they skirt the
barrier and measure within-habitat distance. Figure 4B shows
a network with extreme (100-fold) variation in migration
rates, and Figure 4C combines such variation with an irreg-
ular array shape. Cost-weighted distances help to compensate
for differences in migration rates in these two arrays but still
underperform resistance distances, which simultaneously ac-
count for heterogeneity in migration rates and multiple path-
ways between demes. The remaining array is analogous to
the continuous case shown in Figure 1: demes of equal size
and connected by equal migration rates but arrayed in an
irregular network. Figure 5 compares scatterplots of genetic
distance versus Euclidean distance, cost-weighted distance,
and resistance distance for the array. Cost-weighted distances
perform particularly poorly here, because multiple pathways
connecting demes are especially important.

A fourth important result is that resistance distances appear
reasonably robust to variation in deme sizes within arrays,
as long as migration remains balanced. Table 2 shows cor-
relations for cases II and III described in the caption for
Figure 4, in which deme sizes varied from 100 to 1000. IBR
predictions depend on the number of migrants exchanged
between deme pairs—rather than on individual deme sizes
and migration rates per se—and this simplification provides
a good approximation for equilibrium genetic structuring in
these cases as well.
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FIG. 5. Relationship of FST/(1 � FST) values predicted by Markov chain model for the deme array shown in Figure 4D, N � 100 case
to (A) log10(distance), (B) cost-weighted (LCP) distance, and (C) resistance distance. (D) FST/(1 � FST) values for the same deme array,
but with N � 1000 plotted against resistance distance. The resistance distance improves as a predictor of genetic differentiation with
increased deme sizes and migration rates; this is not always the case for Euclidean or cost-weighted distances.

TABLE 2. Isolation-by-resistance (IBR) model performance when
deme sizes vary across networks. Table entries are R2-values for
log-transformed distance (IBD), cost-weighted distance (LCP),
and resistance distance (IBR) for cases II and III described in
Figure 4.

Deme array

Case II

IBD LCP IBR

Case III

IBD LCP IBR

Figure 4A 0.34 0.93 1.0 0.45 0.89 1.0
Figure 4B 0.51 0.86 1.0 0.51 0.85 1.0
Figure 4C 0.38 0.92 1.0 0.40 0.92 1.0
Figure 4D 0.41 0.53 1.0 0.44 0.57 0.99

Finally, the resistance distance has distinct advantages
when long-distance dispersal is important (e.g., in Fig. 3). If
individuals in Figure 3 were five times more likely to disperse
one step than two, correlations between genetic distance and
both log-transformed Euclidean and cost-weighted distances
would be high (R2 � 0.98 and 0.93, respectively). If indi-
viduals were five times more likely to disperse two steps than
one, the correlation would remain high for cost-weighted
distance (R2 � 0.88) but would drop substantially for Eu-
clidean distance (R2 � 0.047). When background migration
is allowed such that m � 0.05 between adjacent demes and
m � 0.01 between all nonadjacent demes, the predictive pow-
er of Euclidean distance (R2 � 0.95) again exceeds that of
cost-weighted distance (R2 � 0.68). Clearly, traditional dis-

tance measures are inconsistent predictors of genetic differ-
entiation here, and they could lead to spurious conclusions
about actual migration patterns or degree of departure from
genetic equilibrium (for similar examples see Matsen and
Wakeley 2006). In contrast, the resistance distance and lin-
earized FST are precisely related in these examples because
of the isotropic migration pattern (R2 � 1.0 for each case).
Even when migration is not isotropic, long-distance dispersal
improves IBR predictions (all else being equal), because
within-deme coalescence times across networks become more
similar.

When Absolute Demographic Parameters Are Unavailable

In each of the above cases, the resistance distance is used
to predict genetic differentiation when deme sizes and mi-
gration rates are known. However, the metric is equally suited
to the vast majority of cases when actual demographic pa-
rameters are unknown but relative values can be hypothe-
sized. For example, consider a network of demes where we
know the topology of the network (i.e., which pairs of demes
exchange migrants and which do not). Either constant num-
bers of migrants between neighboring demes across the net-
work are assumed, or relative rates are hypothesized for dif-
ferent pairs of demes (perhaps based on distance separating
them or on direct observations of movement behavior in dif-
ferent habitat types). Conductance values that reflect the rel-
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ative magnitude of migration can be applied to the network,
and resistance distances can be calculated as indices of rel-
ative genetic differentiation between sampling locations. Had
we applied relative values to the arrays considered above
(e.g., G � 1 for all conductances in Fig. 4D, or conductances
proportional to numbers of migrants exchanged in Fig. 4C),
correlations and scatterplots would have been unchanged
save for the x-axis labels.

Applying the Model to Continuous Landscapes

Although resistance distance calculations operate on dis-
crete networks, the continuous case may be approximated
using discretized habitat maps. This approach is not without
precedent; Slatkin (1985) noted that results from unbounded
continuum and discrete models are similar, a result supported
for the finite case by the simulations of Slatkin and Barton
(1989). Likewise, engineers commonly use discrete resistor
networks as models of continuous conductive materials.

Approximating the continuous case involves discretizing
maps of habitat and replacing habitat cells with nodes. Pairs
of nodes representing cells that exchange migrants are then
connected by resistors, the conductance values of which re-
flect relative numbers of migrants exchanged, thus forming
a network. These conductance values are then entered into
the same G matrix used to solve discrete deme networks. In
the case shown in Figure 1 (binary habitat/nonhabitat, only
local dispersal allowed), nodes representing habitat cells
would be connected to neighboring habitat cells with resis-
tors, while nonhabitat cells would be dropped, as shown in
the inset. When diverse habitat types are represented in the
same landscape, conductance values between habitat cells of
differing type are set to reflect relative numbers of migrants
exchanged between those habitats. Long-distance dispersal
can be incorporated by adding resistors between nonadjacent
nodes, as in Figure 3. Often the simplifying assumption of
stepping-stone migration will be preferable for parsimony,
but long-distance dispersal can have important consequences
for genetic structuring (Slatkin 1985; Rousset 1997; Matsen
and Wakeley 2006), and considering such movements will
be essential when habitat blocks are disjunct.

DISCUSSION

Empiricists have most commonly accounted for spatial het-
erogeneity in studies of isolation by distance by adjusting
Euclidean distances to reflect landscape features that increase
dispersal or act as barriers (e.g., King 1987; Arter 1990; Rowe
et al. 2000; Vos et al. 2001; Lugon-Moulin and Hausser 2002;
Arnaud 2003; Coulon et al. 2004; Schweiger et al. 2004;
Vignieri 2005) or testing for discrete barrier effects using
partial Mantel tests (Smouse et al. 1986). While these ap-
proaches are useful, they may mask the more subtle effects
of limited and irregular habitat extent or spatial variation in
demographic parameters. It is not difficult to imagine situ-
ations in which such phenomena (e.g., constrictions in a spe-
cies’ habitat along an isthmus between two larger, contiguous
blocks of habitat) would produce structuring that could be
misinterpreted as due to a barrier or departure from genetic
equilibrium. Whenever possible, studies of natural popula-
tions should consider these more subtle effects of spatial

heterogeneity rather than assuming habitat to be homoge-
neous and unbounded or simply divided by discrete barriers.

The IBR framework offers an intuitive and flexible ap-
proach to more thoroughly integrate spatial heterogeneity
into studies of natural populations. Like migration matrix and
coalescent models, the IBR model can predict effective mi-
gration rates and pairwise FST-values when population sizes
and migration rates are known. The model’s most promising
contribution, however, is its ability to generate indices of
gene flow and genetic differentiation using large spatial da-
tasets that provide only relative values of local demographic
parameters. Rarely are actual deme sizes, population densi-
ties, or migration rates known for natural populations, but
relative suitabilities of different habitat types and their per-
meabilities to movement can be readily generated using eco-
logical data, published literature, or expert opinion (e.g.,
Boone and Hunter 1996; Vos et al. 2001; Clevenger et al.
2002; Arnaud 2003; Coulon et al. 2004).

Model limitations include assumptions of balanced, ga-
metic dispersal, genetic equilibrium, and no mutation or se-
lection. Model accuracy is also reduced when some demes
are more inbred than others. This reduction in accuracy tends
to zero with increasing numbers of migrants (Table 1).

Even in low migration cases, IBR predictions can greatly
improve over commonly applied isolation-by-distance mod-
els, which share the limitations listed above and are further
limited by assumptions of spatial homogeneity. Improvements
over Euclidean distance are evident even in homogeneous ar-
rays of regular shape (e.g., square arrays, Table 1).

Furthermore, the resistance distance provides a unified
framework for scaling of distance. In elongated rectangular
arrays, Rousset (1997) suggested using the two-dimensional
model (i.e., regressing log-transformed distance versus FST/
[1 � FST]) when habitat is locally two-dimensional and using
the one-dimensional model at larger distances. The IBR mod-
el makes this choice unnecessary by subsuming both cases
within a single model. Many empirical studies do not clearly
specify whether habitat is assumed to be one- or two-di-
mensional, but the IBR model makes assumptions of habitat
configuration explicit.

Decisions of how to apply the IBR model should involve
critical thought about the spatial and temporal scales of the
processes being modeled, recalling that patterns of genetic
structuring result from the cumulative effects of drift and
migration over long time periods. In some cases, it may be
most appropriate to correct only for the presence of persistent
features, such as oceans or mountain ranges. The approach
will be particularly forgiving with simple binary range maps
as long as grid cell sizes capture the salient features of the
species’ range (e.g., the two corridors in Fig. 1). The model
can accommodate more complex formulations when clear
hypotheses about landscape structure and population con-
nectivity exist; however, including fine-scaled movement be-
haviors, particularly in response to ephemeral landscape fea-
tures, may not always be necessary or justified.

Evaluating Model Fit

Visual inspection of scatterplots of resistance distances and
genetic distances can be used along with R2-values to in-
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vestigate how well the model fits the data. A poor model fit
may indicate that model assumptions have been violated or
an inappropriate spatial model has been applied.

Chief among assumptions of IBR and isolation-by-distance
models is that populations are in genetic equilibrium. Dif-
ferentiation is assumed to be due to recurrent processes of
gene flow and genetic drift, yet equation (4) depends on co-
alescence times over which significant landscape or popu-
lation changes may have occurred. For example, maximum
expected coalescence times for the arrays shown in Table 1
for the N � 2 case range from 108 generations (4 � 4, m �
0.1) to 6422 generations (Fig. 4D); when N � 10,000, max-
imum coalescence times exceed 106 generations (Fig. 4D).
This discouraging result is at least partially mitigated by the
fact that FST values are known to approach equilibrium quick-
ly following demographic perturbations (Crow and Aoki
1984; Slatkin 1985). In addition, the simulations of Slatkin
(1993) showed that patterns of isolation by distance can be-
come evident long before coalescence times are reached. Still,
model assumptions will hold best at relatively small geo-
graphic scales, where equilibrium is approached more rapidly
and where mutation has less of an effect on differentiation
(Slatkin 1985, 1993; Rousset 1997). Effects of historical
events and of differences in selective pressures may also be
less evident at short distances (Rousset 1997).

Even when populations are far from equilibrium, IBR anal-
yses can be used to test hypotheses of how different factors
contribute to genetic structuring. For example, the scatterplot
diagnostics described by Hutchison and Templeton (1999)
can be applied in conjunction with IBR predictions to in-
vestigate the interplay of migration, drift, and population
history at different geographic scales. Indeed, applying such
diagnostics without first correcting for spatial heterogeneity
could easily lead to mistaken conclusions about the relative
influence of these factors. In addition, multiple IBR runs can
be used to investigate whether historical or current habitat
configurations better explain genetic structuring, or to com-
pare competing hypotheses about past landscapes and pop-
ulation distributions. Finally, it may often be of interest to
know toward what pattern of genetic structuring the land-
scape is driving populations, regardless of whether equilib-
rium has been reached.

A second assumption of IBR and isolation-by-distance
models is that all demes are equally outbred. Lack of fit can
be due to differing levels of isolation of individual demes
from the network as a whole, resulting in some demes being
more inbred than others. Again, visual inspection of scatter-
plots can help to determine sources of residual variation.
Pairwise genetic distances between samples that are highly
isolated from the network as a whole (e.g., from populations
with low numbers of migrants or at range edges) will tend
to be higher than predicted, while those including more out-
bred samples will be lower than predicted. For example, the
point most above the regression line in Figure 5C reflects
distances between the demes in the upper-left and lower-left
corners of the array in Figure 4D. Points furthest below the
line tend to involve at least one well-connected deme from
the array’s interior.

Most importantly, poor model fit may also result from
applying an incorrect spatial model. Well-connected habitat

may have been assumed where cryptic barriers exist, impor-
tant dispersal pathways may have been ignored, or long-dis-
tance dispersal may not have been considered. Alternative
models may be investigated by calculating resistance dis-
tances using multiple candidate habitat maps or assigning
different conductances to different habitat types. In this way,
competing hypotheses regarding habitat configuration or dis-
persal behavior may be investigated.

Isolation-by-Resistance Versus Other Equilibrium Models

Choices of appropriate predictive models of genetic struc-
turing will depend on the level of detail known about species’
distributions and migration patterns. As with spatial connec-
tivity metrics (Calabrese and Fagan 2004), these choices will
involve trade-offs between data requirements and realism. At
one extreme, we may have samples from different locations
in a species’ range, with no information about its habitat
extent or range limits. At the other, we may have samples
from a discrete array of demes, for which we know actual
deme sizes and migration rates. Traditional isolation-by-dis-
tance models would be most appropriate for the first case,
whereas the accuracy and generality of migration matrix and
coalescent models make them most appropriate for the sec-
ond.

Between these two ideals, there is a wide spectrum of
situations for which the IBR approach can strike a useful
balance between simpler and more complicated models. Un-
like the alternatives, resistance distances can be calculated
using a range of data inputs, including (in order of increasing
detail) spatially homogeneous arrays with unknown demo-
graphic parameters, coarse-scale range maps, maps of habitat
distribution within a species’ range, maps of habitat types of
differing qualities, and maps of discrete demes with known
deme sizes and migration rates. The method’s most promising
use will likely be in the intermediate cases, when only range
maps or models of habitat suitability (including potential
barriers) are available, as this is an unfilled niche among
gene-flow models.

Moreover, as described above, the IBR model has sub-
stantial computational advantages over Markov chain and
coalescent models, greatly increasing the number of demes
that can be analyzed. The ability to accommodate large net-
works is particularly relevant to continuously distributed pop-
ulations, which could easily require solving discretized arrays
with tens of thousands of grid cells.

Software

Software to calculate resistance distances in both discrete
stepping-stone arrays and in continuous GIS habitat maps
is available at http://www.nceas.ucsb.edu/�mcrae/software.
The software accommodates habitats of differing qualities
and allows connections between nonadjacent grid cells based
on cell values and user-input distance functions.

Conclusions

Linear circuits can provide simple and intuitive models of
gene flow and genetic differentiation in heterogeneous land-
scapes. Effective conductance is a readily calculable analog
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to effective migration, and the resistance distance predicts
relative levels of equilibrium genetic differentiation. IBR
analyses can improve over standard isolation-by-distance ap-
proaches by incorporating hypotheses of how habitat hetero-
geneity constrains gene flow without the data requirements
or computational complexities of migration matrix or coa-
lescent models. After correcting for effects of habitat con-
figuration, empiricists can then more reliably attribute resid-
ual variation to other factors such as cryptic barriers or his-
torical events.

The IBR model should also allow prediction of genetic and
evolutionary consequences of landscape change, particularly
if first calibrated with contemporary landscape and genetic
data. In this capacity, the model could be used to predict how
conservation efforts or land-use scenarios may enhance or
disrupt gene flow and species’ capacities for adaptation, spe-
ciation, and macroevolutionary change (Templeton et al.
2001). The framework introduced here thus provides theo-
retical and practical links between the fields of evolutionary
biology, landscape ecology, and conservation biology and
should further efforts to synthesize these disciplines.
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