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Abstract. Connectivity among populations and habitats is important for a wide range of
ecological processes. Understanding, preserving, and restoring connectivity in complex
landscapes requires connectivity models and metrics that are reliable, efficient, and process
based. We introduce a new class of ecological connectivity models based in electrical circuit
theory. Although they have been applied in other disciplines, circuit-theoretic connectivity
models are new to ecology. They offer distinct advantages over common analytic connectivity
models, including a theoretical basis in random walk theory and an ability to evaluate
contributions of multiple dispersal pathways. Resistance, current, and voltage calculated
across graphs or raster grids can be related to ecological processes (such as individual
movement and gene flow) that occur across large population networks or landscapes. Efficient
algorithms can quickly solve networks with millions of nodes, or landscapes with millions of
raster cells. Here we review basic circuit theory, discuss relationships between circuit and
random walk theories, and describe applications in ecology, evolution, and conservation. We
provide examples of how circuit models can be used to predict movement patterns and fates of
random walkers in complex landscapes and to identify important habitat patches and
movement corridors for conservation planning.

Key words: circuit theory; dispersal; effective distance; gene flow; graph theory; habitat fragmentation;
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INTRODUCTION

Connectivity among habitats and populations is

considered a critical factor determining a wide range

of ecological phenomena, including gene flow, meta-

population dynamics, demographic rescue, seed dispers-

al, infectious disease spread, range expansion, exotic

invasion, population persistence, and maintenance of

biodiversity (Kareiva and Wennergren 1995, Ricketts

2001, Moilanen and Nieminen 2002, Calabrese and

Fagan 2004, Moilanen et al. 2005, Crooks and Sanjayan

2006, Damschen et al. 2006, Fagan and Calabrese 2006).

Preserving and restoring connectivity has become a

major conservation priority, and conservation organi-

zations are investing considerable resources to achieve

these goals (Beier et al. 2006, Kareiva 2006).

Understanding broad-scale ecological processes that

depend on connectivity, and making effective conserva-

tion planning decisions to conserve them, requires

quantifying how connectivity is affected by landscape

features. Thus, there is a need for efficient and reliable

tools that relate landscape composition and pattern to

connectivity for ecological processes. Many ways of

predicting connectivity using landscape data have been

developed (reviewed by Tischendorf and Fahrig

2000a, b, Moilanen and Nieminen 2002, Calabrese and

Fagan 2004, Fagan and Calabrese 2006). Common

approaches include the derivation of landscape pattern

indices (e.g., Schumaker 1996), individual-based move-

ment simulations (e.g., Schumaker 1998, Hargrove et al.

2005), and analytic measures of network connectivity,

such as graph theory and least-cost path models (Keitt et

al. 1997, Urban and Keitt 2001, Adriaensen et al. 2003,

Minor and Urban 2007). The latter have gained

increasing attention in recent years and are widely
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applied in connectivity modeling and in conservation
planning.

We propose that connectivity models from electrical
circuit theory can make a useful addition to the
approaches available to ecologists and conservation
planners. Circuit theory has been applied to connectivity
analyses in chemical, neural, economic, and social
networks, and has recently been used to model gene
flow in heterogeneous landscapes (McRae 2006, McRae
and Beier 2007). The same properties that make circuit
theory useful in these fields hold promise for ecology
and conservation as well. Because connectivity increases
with multiple pathways in circuit networks, distance
metrics based on electrical connectivity are applicable to
processes that respond positively to increasing connec-
tions and redundancy. Additionally, previous work has
shown that current, voltage, and resistance in electrical
circuits all have precise relationships with random walks
(Doyle and Snell 1984, Chandra et al. 1997). These
relationships mean that circuit theory can be related to
movement ecology via random-walk theory, providing
concrete ecological interpretations of circuit-theoretic
parameters and predictions. Finally, because algorithms
to implement circuit models are well developed, they can
be applied to large networks and raster grids.

Here we present several ways in which circuit theory
can be used to model connectivity in ecology and
conservation. We describe ecological applications of
previously developed theory relating resistance, current,
and voltage in electronic circuits to random walks on
analogous graphs (Doyle and Snell 1984, Klein and
Randic 1993, Chandra et al. 1997). This theory can be
applied to predict movement patterns and probabilities
of successful dispersal or mortality of random walkers
moving across complex landscapes, to generate mea-
sures of connectivity or isolation of habitat patches,
populations, or protected areas, and to identify impor-
tant connective elements (e.g., corridors) for conserva-
tion planning. Our approach does not require new ways
of representing landscape data; rather, it takes advan-
tage of graph-theoretic data structures, which are
already familiar to many ecologists, and can be applied
in traditional graph-theoretic or raster GIS frameworks.
Coupled with applications of circuit theory to predict
equilibrium patterns of gene flow (McRae 2006, McRae
and Beier 2007), these new applications comprise a
modeling framework that integrates spatial aspects of
ecology, evolution, and conservation.

BASIC CONCEPTS

Graph data structures and terminology

Connectivity models from circuit theory are applied to

graphs (Harary 1969), so we will use the terminology of

graph theory here (see Urban and Keitt 2001 for a

review). Briefly, graphs are networks comprised of sets

of nodes (connection points which represent, e.g., habitat

patches, populations, or cells in a raster landscape)

connected by edges (Fig. 1). Edges reflect functional

connections, such as dispersal, between nodes. The

weight of each edge typically corresponds to the strength

of the connection (e.g., the ease of movement or number

of dispersers exchanged) between the nodes it connects.

Circuit theory

In this paper, circuits are defined as networks of nodes

connected by resistors (electrical components that

conduct current) and are used to represent and analyze

graphs (Fig. 1). The basic concepts of resistance,

conductance, current, and voltage all apply, and their

definitions and ecological interpretations are summa-

rized in Table 1. Recall Ohm’s law, which states that

when a voltage V is applied across a resistor, the amount

of current I that flows through the resistor depends on

(1) the voltage applied and (2) the resistance R, such that

I ¼ V/R. The lower the resistance (or the higher the

conductance, G, which is simply the reciprocal of

resistance), the greater the current flow per unit voltage.

Similarly, when a voltage is applied across two nodes in

a resistive circuit (e.g., between nodes a and b in the

circuits shown in Fig. 1), the total amount of current

that flows across the circuit is determined by (1) the

voltage applied and (2) the configuration and the

resistances of the resistors the circuit contains. The

effective resistance (R̂ ) between the nodes is the

resistance of a single resistor that would conduct the

same amount of current per unit voltage applied

between the nodes as would the circuit itself, i.e.,

R̂ ¼ V/I.

In simple circuits, such as those shown in Fig. 1,

effective resistance can be calculated using some basic

rules. First, two resistors connected in series may be

replaced by a single resistor with a resistance is that the

sum of the two resistances. Thus, the effective resistance

in the top circuit in Fig. 1D would be R̂ ¼ R1 þ R2 ¼ 2

ohms. Conversely, connecting resistors in parallel

decreases their effective resistance, such that they may

be replaced by a single resistor whose conductance is

FIG. 1. Three graphs at left (A, B, C), with edge weights of
1. Traditional shortest path or geodesic distance, d, between
nodes a and b is identical (d¼ 2) all three cases. At right (D, E,
F), edges have been replaced with unit resistors to create
analogous circuits. Effective resistance, R̂, measured between
nodes a and b decreases from top to bottom (R̂¼ 2, 1, and 2/3,
respectively), reflecting additional contributions from multiple
pathways (figure modified from Klein and Randic [1993]).

October 2008 2713CONNECTIVITY MODELS FROM CIRCUIT THEORY

C
O
N
C
E
P
T
S
&
S
Y
N
T
H
E
S
I
S



given by the sum of the conductances of the two

resistors, that is, Ĝ ¼ G1 þ G2. (In terms of resistance,

these quantities are given by: R̂ ¼ R1R2/[R1 þ R2].)

Applying these equations to the circuits shown in Fig. 1,

the effective resistance declines from the top to the

bottom circuit.

Applying circuit theory to graphs involves preserving

the same graph structure with interconnected nodes, but

replacing graph edges with resistors, as in Fig. 1. The

conductance of each resistor is typically a function of the

corresponding edge weight or probability of movement

between the pair of nodes it connects. The resistance of a

resistor is the reciprocal of its conductance and can be

thought of as representing isolation or movement cost

between nodes.

INTERPRETATION OF RESISTANCE, CURRENT, AND VOLTAGE

Resistance and conductance

The simplest connectivity measure from circuit theory

is the resistance distance (Klein and Randic 1993), a

distance metric defined as the effective resistance

between a pair of nodes when all graph edges are

replaced by analogous resistors (as in Fig. 1D–F). A

convenient property of the resistance distance is that it

incorporates multiple pathways connecting nodes, with

resistance distances measured between node pairs

decreasing as more connections are added. Hence, the

resistance distance does not reflect the distance traveled

or movement cost accrued by a single individual.

Rather, it incorporates both the minimum movement

distance or cost and the availability of alternative

pathways. As additional links are added, individuals

do not necessarily travel shorter paths, but have more

pathways available to them. For example, in the three

graphs in Fig. 1A–C, the minimum distance required to

travel from node a to b (called geodesic distance in

graph theory) is the same. However, the resistance

distance decreases as more connections are added,

reflecting increased flow capacities and levels of redun-

dancy. In short, the resistance distance is small when

two nodes are connected by many paths with low

resistance (high conductance) edges and large when

there are few paths with high resistance. Resistance

distances can be calculated across irregular networks or

with continuous landscape data, which are typically

represented as discretized lattices or grids. On continu-

ous surfaces, the resistance distance increases linearly

with Euclidean distance in homogeneous one-dimen-

sional habitats and with its log transformation in two-

dimensional habitats, a property important for modeling

gene flow (McRae 2006).

Resistance distances can also be related to random-

walk times between nodes. For the theory and examples

that follow, we assume that conductances are chosen so

that the probability of moving from a node along any

given edge is equal to the conductance assigned to the

edge divided by the sum of the conductances of all edges

connected to the node. For an organism moving through

a habitat network (the main focus of this paper), this

would correspond to a scenario where the individual

chooses to move along an edge in proportion to the

edge’s conductance, a surrogate for habitat quality or

(inverse) perceived risk, relative to the quality of all other

choices of direction; this choice is then repeated at each

subsequent step. For genes moving across a network of

populations over many generations, this would corre-

spond to a scenario where edge conductances correspond

to per-generation migration rates (McRae 2006).

TABLE 1. Electrical terms and their ecological interpretations.

Electrical term (symbol, unit) Ecological interpretation

Resistance (R, ohm), the opposition that a resistor
offers to the flow of electrical current.

Opposition of a habitat type to movement of organisms, similar to
ecological concepts of landscape resistance or friction. Graph edges
or grid cells allowing less movement are assigned higher resistance.

Conductance (G, siemens), inverse of resistance and a
measure of a resistor’s ability to carry electrical
current.

Analogous to habitat permeability. In random-walk applications, it is
directly related to the likelihood of a walker choosing to move
through a cell or along a graph edge relative to others available to
it. In population genetic applications (see McRae 2006), it is a
measure of migrants exchanged between neighboring populations.

Effective resistance (R̂, ohm), the resistance to
current flow between two nodes separated by
a network of resistors.

Also known as the resistance distance, a measure of isolation between
pairs of nodes on a graph or cells on a raster grid. Similar to
ecological concept of effective distance, but it incorporates multiple
pathways (Fig. 1D–F). It scales linearly with equilibrium genetic
differentiation in population genetic applications.

Effective conductance (Ĝ, siemens), inverse of effective
resistance, a measure of a network’s ability to
carry current between two nodes.

A measure of connectivity between pairs of nodes on a graph or cells
on a raster grid. It increases with additional available pathways and
scales linearly with effective migration in population genetic
applications.

Current (I, ampere), flow of charge through a node
or resistor in a circuit.

Current through nodes or resistors can be used to predict expected
net movement probabilities for random walkers moving through
corresponding graph nodes or edges (Fig. 2).

Voltage (V, volt), the potential difference in electrical
charge between two nodes in an electrical circuit.
Related to current and resistance by V ¼ IR.

Voltages can be used to predict the probability that random walkers
leaving any point on a graph will reach a given destination
(representing, e.g., successful dispersal) before another (representing,
e.g., mortality; Fig. 3).
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Chandra et al. (1997) showed that, when resistors are

parameterized in this way, the resistance distance

between a pair of nodes is precisely related to the

commute time between the nodes, i.e., the expected time

for a random walker to move from one node to the other

and back again. The commute time between any pair of

nodes u and v can be calculated using the following

formula:

Commute time ¼ R̂uv

Xn

x¼1

Xn

y¼1

ð1=RxyÞ ð1Þ

where Rxy is the resistance of the resistor connecting

nodes x and y and n is the number of nodes in the

network. Note that Eq. 1 accommodates resistors

connecting a node to itself, which would reflect a

nonzero probability of staying at the node for any time

step. Chandra et al. (1997) also provided formulas to

calculate a commute cost, if there is a cost imposed for

each step that is independent of the resistance (and thus

independent of the behavior of a random walker). An

interesting result of Eq. 1 is that if the goal is to

minimize commute times between a pair of nodes, there

is a penalty for adding connections which is offset by the

degree to which the new connections help to lower

effective resistance between the two nodes. Within a

fixed network, commute times between different pairs of

nodes will be directly proportional to the effective

resistances measured between them. Another potentially

useful way to apply resistance calculations across graphs

is to compute upper and lower bounds for the cover

time, or the expected number of steps of a random walk

visiting all nodes in the graph (Chandra et al. 1997).

‘‘Functional’’ or ‘‘effective’’ distance.—Used as an

ecological distance metric, the resistance distance

provides a conceptual complement to commonly used

least-cost distances in two important ways. First, it

integrates all possible pathways into distance calcula-

tions, whereas least-cost distances are measured along a

single optimal pathway. Second, it offers a measure of

isolation assuming a random walk, whereas least-cost

distances presumably reflect the route of choice if a

disperser has complete knowledge of the landscape it is

traversing.

The resistance distance also provides a quantitative

complement to least-cost distances. If only a single

pathway between two nodes is available (e.g., in Fig. 1A

or in any graph that is a tree), the resistance distance will

equal the least-cost distance. On the other hand, when

two identical and independent pathways connect a pair

of nodes in parallel, the resistance distance will be half

the least-cost distance. This suggests an interpretation of

the resistance distance as an indicator of redundancy in

connections relative to the least-cost distance:

Redundancy ¼ ðleast-cost distanceÞ=ðR̂Þ:

Thus, the two measures can be compared directly, their

ratio providing a rough measure of parallel pathways

available to dispersers.

The relationship between resistance distances and

commute times is one way to link circuit and ecological

theories and is the basis of using resistance distances to

predict patterns of gene flow and genetic structuring in

heterogeneous landscapes (McRae 2006). Calculating

commute times directly may provide valuable additional

information because commute times take into account

how efficiently a given landscape configuration will

channel dispersal between source and destination nodes.

Additional pathways that primarily result in increased

wandering behavior rather than directed movement may

reduce resistance distances but will increase commute

times. Low commute times and low resistance distances

between pairs of nodes indicate that dispersers will be

efficiently directed between them.

Current

Currents in circuits can also be interpreted in terms of

random walks on corresponding graphs. Consider again

a graph in which the probability that a random walker

will move from a node along any graph edge is

proportional to its conductance. Doyle and Snell

(1984) showed that when 1 A (ampere) of current is

injected into one node (node a in Fig. 2A) and a second

node (node e) is tied to ground, the current ixy flowing

through the resistor connecting any pair of nodes x and

y is equivalent to the expected net number of times that a

random walker, starting at a and walking until it reaches

e, will move along that branch. Because we are tallying

net passages through the branch, movements from x to y

are counted as positive, whereas movements from y back

to x are counted as negative.

Corridor identification and dispersal predictions.—By

predicting net movement probabilities along branches or

through nodes, current density can be used to identify

landscape corridors or ‘‘pinch points,’’ i.e., features

through which dispersers have a high likelihood (or

necessity) of passing. High current through a node or

branch indicates that removing or converting it will have

a high impact on connectivity. In Fig. 2, all the current

passes through node b; removing that node (or the link

between nodes a and b) would completely disconnect

nodes a and e, whereas removing node c, through which

only half the current passes, would reduce redundancy

but would still leave nodes a and e connected via the

lower branch. In graph terminology, node b is a cutnode,

and the resistor connected nodes a and b is a cutlink.

Voltage

Doyle and Snell (1984) also showed that voltage can be

related to random walk probabilities. Consider a graph in

which a voltage source set to 1 V is connected to one

node (or to a set of nodes), and another node (or set of

nodes) is connected to ground (Fig. 3). The voltage

measured at any remaining node on the graph will equal

the probability that a random walker, starting at that
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node, will reach any of the nodes set to 1 V before

reaching any node connected to ground. The most

obvious application of this property is to predict the

probability of successful dispersal via a random walk

from any node on a graph. Suitable destination patches

for dispersal can be set to 1 V, whereas mortality can be

represented by resistors connected to ground, with their

conductances reflecting probabilities of mortality (Fig. 3).

APPLYING CIRCUIT ANALYSES TO RASTER GRIDS

Predicting connectivity using circuit theory requires
translating spatial data sets into a graph structure, but
that doesn’t mean that primary landscape data must be
in a patch-based or network-style format. In fact, we
envision most landscape applications operating on raster
data, with a graph extracted from these data as is done
for least-cost path analyses (Adriaensen et al. 2003).
Since well-developed computer algorithms allow mil-
lions of cells to be processed, large raster landscapes can
be accommodated.
Analyzing a raster grid involves first assigning

resistances to different habitat types in the grid. Fig. 4
shows a simple example with three different habitat
types: assigned unit, infinite, and zero resistance. The
last is useful when practitioners wish to measure
connectivity or identify important connective elements
between areas (representing, for example, habitat

patches or reserves), rather than points on a landscape.

To represent a grid as a circuit, cells with finite

resistances are converted to nodes (gray), whereas cells

with infinite resistance (i.e., those representing complete

barriers, black) are dropped. Adjacent nodes are

connected by resistors, with resistances reflecting a

function (typically the mean) of the resistances of the

cells they connect. Adjacent cells with zero resistance

(open) are consolidated into a single node that is then

connected by resistors to all nodes adjacent to the zero-

resistance patch. Following this procedure, the 16-cell

FIG. 2. (A) A simple circuit, with a 1-A (ampere) current source (I ) placed at node a, and with node e tied to ground. Branch
currents that would be observed with unit resistors are shown and reflect the net number of times that a random walker, starting at
node a, is expected to pass along each branch before reaching node e. All random walkers must pass across the first branch, but half
would be expected to take the upper pathway, and half the lower. Resistances connecting nodes were set to 1 ohm for this simple
example; the methods we describe here can accommodate heterogeneous resistances with values from 0 to infinity. (B) The same
circuit as in (A), but with ground resistors added to reflect a 1% probability of mortality as the random walker passes through each
node. To achieve this, resistances to ground for nodes a–d were set to 99, 33, 49.5, and 49.5 ohms, respectively. Currents show the
expected number of net movements along each branch, as well as the expected number of deaths at each node. For example, the
proportion of dispersers leaving node a expected to successfully reach node e is 0.9332 (933.2 mA equivalent). Deaths at each node
exceed 1% because nodes are visited multiple times by random walkers, with the highest numbers of deaths observed in nodes with
the highest numbers of visits. Only one possible dispersal destination was included here, but the method can accommodate as many
dispersal destinations as desired. Although we tied the destination node directly to ground, resistors could be added between
destination nodes and ground, with their conductances set to reflect a finite probability that a walker would settle rather than
continue walking once reaching a node.

FIG. 3. The same circuit shown in Fig. 2B, but with a
voltage source (V ) of one volt at node e instead of a current
source at node a. Node voltages reflect the probability that a
random walker, starting at each node, will successfully reach
node e. Consistent with the result from Fig. 2B, the probability
of successful dispersal from node a to node e is 0.9332.

BRAD MCRAE ET AL.2716 Ecology, Vol. 89, No. 10

C
O
N
C
E
P
T
S
&
S
Y
N
T
H
E
S
I
S



grid in Fig. 4 is now represented as a circuit with 13
nodes and 18 resistors.

COMPUTATION

Although simple circuits can be solved by hand, nodal
analysis is typically used to analyze larger circuits, such
as those derived from raster grids (McRae 2006). Given
a circuit with current or voltage sources, nodal analysis
uses Kirchoff’s and Ohm’s laws in matrix form to solve
for a vector, specifying voltages at each node; once these
are known, Ohm’s law can be used to calculate currents
passing through individual resistors or nodes. Effective
resistance between a pair of nodes is given by the voltage
between them when one is connected to a 1-A current
source and the other is connected to ground (e.g., Fig.
2A). The method is described in standard circuit theory
textbooks (e.g., Dorf and Svoboda 2003); an example of
its use to calculate effective resistances is provided by
McRae (2006).
Computer languages used for scientific computing

such as Java, C, MATLAB, and Python include linear
solver routines that can solve for effective resistances on
graphs. Fast graph operations can be used to define
connected components in a landscape and discard from
a graph any components that are completely isolated.
Very large graphs can be processed relatively easily and
efficiently; we have solved for effective resistances,
voltages, and current on landscapes containing over 1
million cells using Java (Sun Microsystems, Mountain
View, California, USA), and up to 48 million cells using
a parallel version of MATLAB (MathWorks, Natick,
Massachusetts, USA) implemented using Star-P (Inter-
active Supercomputing, Waltham, Massachusetts,
USA). Solving 1 million cells on a notebook computer

with a 2-GHz processor and 2 GB of RAM took us 16
minutes using Java and only 20 seconds using MAT-
LAB. This calculation must be repeated for each
configuration of current sources and grounds, but
typical connectivity applications will require a small
number of calculations (e.g., for each pair of popula-
tions or reserves between which connectivity is to be
modeled). Calculations between multiple pairs can be
sped up considerably using matrix preconditioning
and/or parallel processing. Software implementing many
of the algorithms in this manuscript is available (B. H.
McRae, unpublished data).

EXAMPLE APPLICATIONS TO HETEROGENEOUS LANDSCAPES

Here we provide examples of the applications
described above to predict connectivity and movement
of random walkers across large raster grids. For the
example analyses described next, we solved for effective
resistances and node currents using code written in
MATLAB R2007b. The example landscapes (i.e.,
resistance surfaces) were all created using ArcView
GIS 3.2 (ESRI, Redlands, California, USA) and
exported as ASCII raster grids, with cell values
corresponding to resistances ranging from 0 to infinity
(Fig. 5). For circuit analyses, cells with finite resistances
were converted to nodes, whereas those with infinite
resistances were dropped. Cells were connected to their
eight neighbors such that the resistance between a pair
of first-order neighbors was set to the mean of the two
cells’ resistances, and the resistance between a pair of
second-order (diagonal) neighbors was set to the mean
resistance multiplied by the square root of 2 to reflect the

FIG. 5. Nine simple raster landscapes (A–I), consisting of
100031000 cells. Habitat patches (shown in white and assigned
0 resistance, or infinite conductance) are connected by different
configurations of dispersal habitat (light gray, 10 ohms/cell;
dark gray [lower corridor in panel C], 20 ohms/cell; black ¼
infinite resistance or 0 conductance).

FIG. 4. A simple landscape represented as both a grid and a
circuit. The landscape contains two contiguous patches of
0-resistance cells (open), dispersal habitat of finite resistance
(gray), and one ‘‘barrier’’ cell with infinite resistance (black).
Cells with finite resistance are replaced with nodes (small dots),
and adjacent nodes are connected by resistors. Patches of cells
with 0 resistance are each consolidated into a single node (large
dots). Connections between diagonal neighbors and nonadja-
cent cells can also be incorporated, the latter representing
‘‘hops’’ over intervening cells. Current sources, voltage sources,
and ground connections can be added as in Figs. 2 and 3.
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greater distance between cell centers. We converted
individual cells to single nodes, except for cells in areas

of zero resistance, i.e., open source/target patches; as in
the simple landscape in Fig. 4, these cells were
considered collectively and consolidated into a single

node for the analyses. For all examples, we used the
same resistance surfaces to calculate least-cost distances

and map least-cost corridors using PATHMATRIX
software (Ray 2005).

We started with nine simple landscapes (Fig. 5) meant

to illustrate different properties of circuit models. The
landscapes consisted of 1000 3 1000 cells each and

contained two primary habitat patches, which were
always the same distance from one another and always
occupied the same total area. Least-cost and resistance

distances calculated between habitat patches in the nine
simple landscapes illustrate some advantages of the

resistance distance (Fig. 6). Although least-cost distanc-
es correctly identify decreased isolation between habitat
patches in landscape B relative to A, they were identical

in landscapes B through I. Resistance distances show a
similar decrease from landscape A to B, but they also

decrease from B to I, reflecting the availability of
additional, or wider, pathways. Note that between

landscapes H and I, only the shape of the primary
habitat patches has changed, and not their area or the
distance separating them. Yet the resistance distance

differs because the greater surface area of each habitat
patch in landscape I acts as a ‘‘drift fence’’ to better

intercept or release dispersers.

Commute times ranged from 1.2 million steps
(landscapes B, C, and G) to 6.2 million steps (landscape
A). They were intermediate for landscapes D, E, F, H,
and I, which had commute times of 2.6, 3.0, 1.6, 2.7, and
2.0 million steps, respectively. Lower commute times
reflect configurations in which dispersers are efficiently
channeled between habitat patch pairs, minimizing
wandering time.
These same simple landscapes also demonstrate how

current maps (Fig. 7) can highlight connective elements
in raster frameworks. As the availability of multiple
pathways increases, current density—indicating cells
through which dispersers are likely to pass moving from
one patch to the other—decreases. Pinch points are
highlighted in landscapes D–F, and the ‘‘drift fence’’
effect resulting from the more linear shape of the habitat
patches in landscape I is evident as well. Fig. 7J shows a
least-cost path map for the ‘‘braided stream’’ corridor
configuration. The technique identifies the route with the
lowest cumulative cost, but gives no information about
the contribution of alternative pathways. By contrast,
the current map (Fig. 7D) clearly indicates the
importance of different corridor segments, with current
densities at their highest in the two critical linkages and
at their lowest in segments that are most redundant.
We can now illustrate how these models can be used

to analyze connectivity in more realistic landscapes. Fig.
8A shows a complex landscape, with patches of high-
quality habitat, lower quality ‘‘matrix’’ habitat, corri-
dors, and complete barriers. Fig. 8B shows cumulative
travel cost mapped between two high-quality patches
using standard least-cost path techniques. The map
highlights the most efficient pathway between the two
patches, as well as low-cost detours that do not actually
contribute to connectivity, e.g., into habitat cul-de-sacs
or along ‘‘corridors to nowhere.’’ By contrast, the
current map between the same two habitat patches
(Fig. 8C) highlights critical pinch points between the two
patches. Habitat cul-de-sacs and corridors that do not
contribute to connectivity have minimal current flow.
The current map also indicates two broad routes linking
the habitat patches, whereas only one is highlighted in
the least-cost map. The current map thus gives
important insight into the redundancy that would be
lost if the second route were to be blocked.
Often it will be useful to summarize connectivity

between many habitat patches or protected areas in a
single map. Fig. 9A shows the result of adding 10
pairwise current maps calculated among all pairs of five
habitat patches. These maps show which landscape
elements are most important for overall connectivity
among the five habitat patches, indicating the net
number of times random walkers are expected to move
through raster cells if one random walker moves from
each patch to each other patch.
We could also extend the analyses of our raster maps

in much the same way as the analyses in Fig. 2A were
extended in Figs. 2B and 3. Ground resistors could be
added to incorporate mortality or finite probabilities of

FIG. 6. Least-cost distances and resistance distances be-
tween habitat patches for the nine simple landscapes shown in
Fig. 5. Least-cost distances decrease from (A) to (B) but are
equivalent for all remaining maps. Effective resistances decrease
not only from (A) to (B), but also from (B) to (I), reflecting the
availability of more and wider pathways. Redundancy, defined
here as the ratio of least-cost distance to effective resistance,
would be roughly equal for cases (A) and (B) but would
increase from (B) to (I). Cost-weighted distance (measured in
cost units) were calculated using PATHMATRIX software.
Resistance distances (measured in ohms) were calculated using
Circuitscape software.
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settling once a disperser reaches a habitat patch or

protected area. With multiple destination patches, a

matrix of asymmetrical dispersal rates between all patch

pairs could be generated. Or, target patches could be set

to 1 V and probabilities of successful dispersal (or

dispersal to one patch vs. others) from any point on the

landscape could be mapped. Finally, additive maps

(such as the one shown in Fig. 9A) could be adjusted to

give greater weight to important source or destination
patches, with more current released or absorbed by
larger or higher quality habitat patches.

Model sensitivity to landscape scale

Representing a landscape as a raster grid always

involves choosing an appropriate scale of analysis (cell

size and map extent). Because different species respond

FIG. 7. Current flow through landscapes shown in Fig. 5 when 1 A (ampere) of current is injected into one habitat patch and the
other is connected to ground. Current maps were log-transformed to facilitate display. Among the nine panels, three different
quantitative scales are applied to the color schemes in order to most clearly illustrate differences in current densities. The three
schemes are applied in panels (A)– (D), (E)– (G), and (H)–(I). Highest maximum current densities (indicating the greatest impact
of habitat cell removal or conversion) are observed in (A), (B), and (D)–(E), where connectivity depends on single, narrow corridor
segments. The lowest maximum current densities are observed in landscape (I), which provides the most redundancy and lowest
effective resistance. This landscape also exhibits a drift-fence effect, in which the linear shapes of the habitat patches act to intercept
dispersing individuals. (J) The least-cost path solution of the ‘‘braided stream’’ landscape shown in Fig. 5D. Whereas this technique
highlights the most efficient travel path, it gives no indication of pinch points or effects of multiple parallel corridors.
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to landscape structure at different scales (Wiens 1985,

Wiens and Milne 1989; Beier et al., in press), there will

be no single correct approach to this. The extent of an

analysis will obviously have important consequences,

since map edges will constrain potential movement

routes. Cell size is also important, but our analyses

indicate that as long as it remains fine enough to capture

relevant landscape elements, such as narrow corridors

and barriers, there is considerable robustness in the

technique to changes in cell size. Fig. 9B shows the same

landscape as in Fig. 9A, but analyzed using cell sizes that

are an order of magnitude larger. Notably, current

densities and resistance distances calculated among

habitat patches are highly correlated between the two

scales, a consistent result in our analyses in a wide range

of natural and artificial landscapes. However, these

analyses also show that it is particularly important to

capture absolute barriers to movement that may not

easily be detected at coarser cell sizes. Such barriers

(such as the narrow roads in Fig. 9A) were automatically

FIG. 8. Connective elements identified using least-cost path and circuit models in a complex landscape. (A) Map of the
landscape, with resistances and costs for circuit and least-cost path analyses ranging from 1 (light gray) to 100 (dark gray) to infinite
(black). (B) Results from least-cost modeling between habitat patches in lower left and upper right corners of the map. The value
assigned to each cell indicates the cost accumulated moving along the most efficient possible route that passes through the cell from
one habitat patch to the other; brighter areas indicate cells along the route of lowest cumulative cost. Some habitat cul-de-sacs are
highlighted because the most efficient path connecting one patch to the other via the cul-de-sac has a low cost relative to most other
features in the landscape. For the same reason, some ‘‘corridors to nowhere’’ are highlighted, such as the one leading off of the top
of the map. (C) Current map between the same two habitat patches. Higher current densities indicate cells with higher net passage
probabilities for random walkers moving from one patch to the other. The map highlights ‘‘pinch points,’’ or critical habitat
connections, between the two patches. Habitat cul-de-sacs have minimal current flow because they do not contribute new,
independent pathways between habitat patches.

FIG. 9. Summed current from all pairwise current maps between five habitat patches, each shown in white. Calculations were
performed (A) at the original 1000 3 1000 cell resolution and (B) at a reduced 100 3 100 cell resolution. To produce the coarser
resolution habitat map, blocks of 10 3 10 cells were converted to single cells, with the resistance of each new cell set equal to the
mean resistance of the 100 cells it contained. The current maps at the two resolutions identify the same pinch points and important
corridors, and pairwise effective resistances measured between all habitat patch pairs at the two scales are highly correlated (R2¼
0.963), illustrating the method’s robustness to scale.

BRAD MCRAE ET AL.2720 Ecology, Vol. 89, No. 10

C
O
N
C
E
P
T
S
&
S
Y
N
T
H
E
S
I
S



incorporated into our analyses in Fig. 9B because we

averaged resistances among consolidated cells, with

infinite resistances ‘‘trumping’’ all others.

DISCUSSION

Although a wide variety of methods exists for
predicting connectivity across landscapes, circuit-theo-
retic models provide some distinct advantages. First, the
precise relationships between circuit theory and random
walks lend theoretical justification to these models and
mean that the metrics they generate can genuinely be
considered to be process based. Second, these relation-
ships also mean that circuit models will often be more
straightforward to parameterize than other connectivity
models because conductances and resistances assigned
to edges or raster cells have clear interpretations in terms
of movement probabilities. Third, unlike commonly
applied least-cost path approaches, circuit methods
incorporate multiple pathways, not only in generating
metrics of connectivity and isolation, but also in
identifying corridors and other important landscape
elements connecting habitat patches or protected areas.
An advantage of this property is that when dispersal
pathways are lost, the predicted importance of remain-
ing pathways increases. Finally, circuit models have an
intuitive appeal in that the idea of using resistance and
current to model connectivity across landscapes is
readily understood by both practitioners and nonscien-
tists. In effect, we find that the method objectively
identifies important connective elements similar to those

identified by the human eye, replicating expert opinion

but removing potential sources of bias once relative

resistance values and scales of analysis have been

defined.

Niches for circuit models

We envision several roles for circuit theory in

evolution, ecology, and conservation. Circuit theory

has already been shown to be useful for predicting

patterns of gene flow in heterogeneous landscapes,

particularly when data on absolute population sizes

and migration rates are lacking, but relative population

densities or permeabilities to movement are hypothe-

sized for different landscape features (McRae 2006,

McRae and Beier 2007). As discussed in the section

below, the theory underlying gene flow modeling is

similar to that described here, but relates resistance

distances to random walks of genes over multiple

generations rather than to random walks of individuals

within single lifetimes.

In ecology, circuit models can be used as simple

movement models, e.g., when data or time required for

simulations are lacking or when the comparison of

simple and complex model predictions is desirable. An

example application would be to predict dispersal rates

between populations based on simple landscape data in

order to parameterize metapopulation models. Addi-

tionally, just as it can be used to predict gene flow,

circuit theory may be useful in modeling other emergent

PLATE 1. Puma mother and kitten in Caspers Wilderness Park, Orange County, California. Cirtuit theory is being applied to
inform efforts to conserve connectivity for pumas in the region. Photo credit: Donna Krucki.
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processes that depend on dispersal. Some ecological

phenomena, e.g., community similarity and diversity,

may respond to dispersal not of one species, but of

several species with only somewhat similar dispersal

abilities or habitat requirements. Here, simulations may

be prohibitive or inappropriate because of the large

number of species involved. However, analytic ap-

proaches like ours may be able to adequately capture

these processes without imposing prohibitive data or

computational requirements.

Measurements of resistance distances, commute times,

and current densities have clear applications in conser-

vation planning, such as corridor design or predicting

the effects of different land use practices on connectivity.

Circuit theory should provide an especially powerful

tool for designing robust reserve networks, i.e., those

that still provide for connectivity in the face of

uncertainty in species distribution data and/or future

habitat loss (Moilanen et al. 2006a, O’Hanley et al. 2007;

Pinto and Keitt, in press). Importantly, circuit methods

can be applied to the same resistance surfaces that are

commonly employed in least-cost path analyses, and

with little added computational expense.

In this paper, we limited our examples of circuit-based

analyses to accessible interpretations of resistance,

voltage, and current. However, there should be a large

number of tools that could be derived from these basic

properties. For example, metrics that combine predic-

tions of efficient travel paths, pinch points, and

mortality risks could allow practitioners to map

landscape features that most effectively contribute to

connectivity while minimizing mortality rates. Or,

metrics derived from shortest path or least-cost distanc-

es, such as the Harary index (Ricotta et al. 2000, Jordán

et al. 2003) or the integral index of connectivity

(Pascual-Hortal and Saura 2006) could be modified by

substituting resistance distances for least-cost distances

in their calculation. Additionally, algorithms like edge

and node thinning, used to evaluate impacts to

connectivity of habitat loss in graph theory (Urban

and Keitt 2001), can also be applied using circuit-based

measures.

A note about ecological vs. evolutionary applications

It is important to be aware of subtle differences in

assumptions behind applications of circuit theory to

different processes. So far we have identified two distinct

frameworks, one which models gene flow across

population networks and the other focused on individ-

ual movement across habitat networks. The former

assumes nodes (or cells) represent subpopulations (or

occupied habitat for continuously distributed popula-

tions), with resistors representing numbers of migrants

exchanged between adjacent nodes per generation

(McRae 2006). By contrast, applications focused on

individual movement will typically be implemented at

finer temporal and spatial scales, with nodes (cells)

mapped at the scale at which individual movement

decisions are made. Thus, the two will often be applied

at different scales and with (at least somewhat) different

habitat models. Similarly, predictions from the two

frameworks must also be interpreted differently. For

example, in applications where nodes or cells represent

occupied habitat exchanging migrants, a decrease in the

resistance distance between two nodes corresponds to a

proportional increase in gene flow predicted between

them; however, when nodes represent dispersal habitat

rather than subpopulations, a decrease in the resistance

distance corresponds only to an increase in available

dispersal pathways, and not necessarily a commensurate

increase in individual movement rates or gene flow. It

does, however, indicate that there will be more pathways

available to dispersers, and presumably greater robust-

ness of the network to future habitat loss. Conservation

applications may be implemented using either frame-

work, but it is important to specify the process being

modeled.

Model parameterization

A critical and challenging step in applying circuit

models to landscape data will be assigning relative

movement, mortality, and/or settlement probabilities to

different land cover classes. Many of the same strategies

for parameterizing least-cost path models using expert

opinion, literature review or data on species occurrences,

animal movement paths, or interpatch movement rates

(reviewed by Beier et al., in press) will be useful in circuit

modeling, particularly when viewed in light of the

concrete interpretations of resistances in terms of

random walk probabilities outlined here. Practitioners

should also consider approaches taken to parameterize

other models that consider habitat heterogeneity, such

as diffusion and simulation models (e.g., Dunning et al.

1995, Schumaker 1996, Ovaskainen 2004; Arellano et

al., in press; Ovaskainen et al., in press).

Connections between resistance distances and gene

flow (McRae 2006, McRae and Beier 2007) should

facilitate the use of genetic data to estimate relative

resistances of different habitats. Still, because assump-

tions differ between evolutionary and ecological appli-

cations of circuit theory (as discussed here), using data

from one to parameterize the other must be done with

care.

Regardless of the method used to assign them, there

will always be uncertainty in resistance values. We

encourage uncertainty analyses to address how decisions

at each modeling step affect results; Beier et al. (in press)

reviewed strategies for conducting uncertainty analysis

in least-cost path modeling, and these should be equally

applicable to circuit theory. Additionally, for corridor

and reserve designs, uncertainty in landscape resistances

could be incorporated in much the same way as

proposed by Moilanen et al. (2006b), with penalties that

reflect modeled error incorporated into landscape

resistance input maps.
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Limitations and alternatives

As with other methods for describing connectivity in
complex landscapes, there are limitations to our

approach that should be considered when deciding if it
is appropriate for a given problem. First, because

resistors are isotropic, i.e., their resistance to current
flow is the same in both directions, the methods

described here cannot accommodate movement that is
biased in one direction (as in directed graphs). This will

limit applications in some systems, e.g., marine environ-
ments, where directional currents play a large role in

determining dispersal rates. Second, circuit models are
restricted to Markovian random walks, i.e., random

walks in which each step is independent of previous
moves. Random walkers thus have no ‘‘memory,’’ and

our framework cannot incorporate correlated random
walks, changes in movement behavior with time, or

mortality rates that increase with an organism’s age.
Even when the assumption of constant mortality with
time is reasonable, incorporating mortality into circuit

models must be done with care. Because they have no
memory or long distance perception, random walkers

can retrace their steps over and over, inflating mortality
rates because travel time and exposure to mortality risks

are increased (Fig. 2B).
Several other connectivity modeling frameworks

provide complements to ours. The conceptually and
computationally simplest are based on Euclidean

distances, and can be quickly calculated on grids with
millions of cells (e.g., Moilanen et al. 2005, Moilanen

and Wintle 2007). Least-cost path models have been
applied for over a decade in connectivity analyses and

have proven useful in conservation planning efforts
(e.g., Beier et al. 2006, Rouget et al. 2006). Although

they do not have the theoretical foundation in random
walk theory that circuit models do, their intuitive appeal

and ability to identify efficient movement pathways
make them useful counterparts to the applications we

have described here. Recently, variants on these
approaches have been developed that identify and rank
the importance of multiple pathways across landscapes

(Theobald 2006; Pinto and Keitt, in press).
More sophisticated analytical and simulation models

can be used to derive results similar to those produced
by circuit theory, with some advantages. Markov chain

models use the same data structures as those described
here, but can accommodate directionality in movement

along edges, providing more flexibility for modeling,
e.g., effects of directed dispersal, prevailing winds, or

ocean currents. Still, although Markov chain models
have been available for decades, ecologists and conser-

vationists have been slow to adopt them, whereas
simpler, more intuitive least-cost path models have been

widely employed. Spatially structured diffusion models
(Ovaskainen 2004) are promising because they also

integrate over all movement paths and can approximate
correlated random walks in their long-term behavior,

but their mathematical formulation can be quite

challenging. Of course, individual-based movement

simulations (e.g., Schumaker 1998, Hargrove et al.

2005) offer much more flexibility than analytic models,

can incorporate subtle effects of dispersal behavior and

other aspects of life history, and can simulate transient

effects of landscape characteristics that evolve over time.

However, the data and computational requirements of

such models will likely continue to limit their use in

many applications (Minor and Urban 2007). Our hope is

that circuit models will fill a niche between simpler

Euclidean or least-cost path analyses and more powerful

analytic and simulation approaches.

Future prospects

Our focus has been on measuring connectivity in

heterogeneous landscapes using models from circuit

theory. Even in this context, there remain many exciting

applications to explore. Nonequilibrium circuit analyses

may be applicable to ecological problems (McRae and

Beier 2007), and nonlinear circuit elements show promise

as well (for example, diodes would allow incorporation of

movement probabilities with directional bias). Addition-

ally, analytical techniques developed to minimize effec-

tive resistances across networks (Ghosh et al. 2006) may

be useful in designing optimal networks for connectivity

conservation. More broadly, circuit theory will likely

benefit other areas of ecology that deal with networks,

such as the analysis of community interactions, food web

structure, exotic invasion, or disease transmission. In the

meantime, circuit models are being actively applied to

conservation planning for species of concern in rapidly

developing landscapes, including pumas (Puma concolor;

see Plate 1) in southern California.
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